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COMMENT 

Lower bounds on the numbers of lattice animals 

S G Whittingtontt and D S Gaunt§ 
t Department of Chemistry, University of Bristol, Bristol BS8 1TL UK 
I Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

Received 13 March 1978 

Abstract. Rigorous lower bounds on the connective constants for site and bond animals 
have been derived for d-dimensional simple hypercubic lattices. These bounds establish 
for arbitrary d that the connective constants for site and bond animals are strictly greater 
than the connective constant for self-avoiding walks. 

In this note we present some exact results concerned with the derivation of bounds on 
the numbers of site and bond lattice animals. The enumeration problem on lattices of 
two, three and higher dimensions, and the subsequent analysis of data is of interest in 
the theory of percolation and has been the subject of several recent papers (Sykes and 
Glen 1976, Sykes er a1 1976, Gaunt et a1 1976, Gaunt and Ruskin 1978). We 
consider the square lattice as an example and define a,, b, and c, to be, respectively, 
the numbers of site animals, bond animals and self-avoiding walks weakly embed- 
dable in the lattice, per lattice site. The subscript refers to the number of sites for site 
animals, and the number of bonds for bond animals and self-avoiding walks. Since 
each (undirected) self-avoiding walk with n bonds is a site animal with (n  + 1) sites, 
which is in turn a bond animal with n bonds, we have 

ic, S anti S b,. (1) 
Hammersley (1957) showed that 

say, and Klarner (1967) showed that 

n+w lim n-l In a,  = su n >! n-* In a, =In A, (3) 

say. An exactly analogous argument can be constructed for the case of the bond 
animals giving 

lim n-l In b, =sup n-l In b, = In Ab (4) 
n>O n+cG 

say. Hence (1) implies that 

S A , S A b .  (5  1 
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The number of animals has also been studied under the name of polyominoes 
(Golomb 1965). The numbers a, correspond to fixed polyominoes; the numbers of 
free polyominoes p ,  correspond to an enumeration of space types (Domb 1960). It is 
easily proved that free and fixed polyominoes have the same limit A, (Klarner 1967). 
For example, on the square lattice 

8 P n  3 a n  3 P n  (6) 

which implies that 

lim n- l  In p ,  = lim n- l  In a,  = In A,. 
n+w n-m 

(7) 

The factor of 8 in (6) is the maximum count per lattice site of any particular space 
type. (For a general simple hypercubic lattice of dimensionality d this factor should be 
replaced by 2d d ! )  Furthermore, if we assume asymptotic forms of the kind 

a, - an?A :, p ,  - p n  -‘A (8) 

then it follows from (6) that 7 = 8. 
Although a, and p ,  have the same form asymptotically, the initial coefficients of a, 

behave quite differently from the initial coefficients of p,. For the square lattice, the 
number of animals is given by Sykes and Glen (1976) through a19 and the number of 
polyominoes through p18 by Lunnon (1971). We have analysed both of these 
sequences by the ratio method (Gaunt and Guttmann 1974) and find (not surprisingly, 
we feel) that the a, are considerably smoother and attain their asymptotic behaviour 
much faster than do the p, .  We conclude that for the purpose of numerical estimation 
of the growth parameter A, and the critical exponent 8 from the first few terms of the 
series, the a, are to be preferred to the p,. However, by n = 18 we find a, = 
7.99919. . . p,,  so there is little to choose between the two sequences. Lunnon (1971) 
has proved that asymptotically a, - Sp,  for the square lattice. 

There is now a good deal of exact enumeration data available for a,, b, and c, 
which has allowed good estimates to be made of the limits A,, A b  and p, respectively. 
Although these estimates suggest very strongly that all of the inequalities in ( 5 )  are 
strict for all lattices, they involve assumptions (see (8), for example) about the ways in 
which the limits are approached and are therefore non-rigorous. One of the 
consequences of our results is that two of the three inequalities in ( 5 )  can be made 
strict for a general simple hypercubic lattice of dimensionality d. 

An exactly known value of a,, for example, for some particular m, allows one to 
establish a rigorous lower bound on A, since 

m Ina,s lnA,  (9) 
- 1  

for any m. For instance, using a19 = 5940 738 676 (Sykes and Glen 1976), gives 
A,L3-2689.. . , for the square lattice. We shall show how this can be improved to 
give A, 2 3.3904 . . . , which is still well below the best numerical estimate of 4.065 * 
0.005 (Guttmann and Gaunt 1978), and also below the best lower bound of A,a3.72 
(Klarner 1967). However, our technique readily generalises to site and bond animals 
on simple hypercubic lattices of dimensionality d, for which problems we give explicit 
lower bounds for all d c 7 .  

For each site animal on the square lattice we define the top (bottom) site as the 
left-most (right-most) site in the top (bottom) row of sites, and the left (right) site as 
the top (bottom) site in the left-most (right-most) column of sites. Let the coordinates 
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of the top, bottom, left and right sites of a particular m-animal be (xT, yT), 
(XB, ye ) ,  (xL, yL) and (XR, Y R )  and those of a second m-animal be (xk, yk), etc. If each 
m-animal is joined to each other m-animal by translating so that 

(i) XL =xT,  Y b = Y T + 1  

(ii) x t  = xR+ 1, y ;  = YR 

and a bond is added joining the appropriate pair of adjacent vertices, the resulting 
graphs will be animals with 2m sites, and moreover, these animals will be distinct. 
Hence, 

(10) 
2 azm z= 2a m. 

Now fix m and write n = mp + q with 0 C q < m. Successive application of (10) gives 

a,  3 2P-1aP,{2a,}, ao=+ 

(11) ,2P-1 P - a,. 

Taking logarithms, dividing by n, and letting n + m, gives 

n lim +m n In a, 3 m-' ln(2a,) (12) 

which yields, on using aI9(2), A,s3*3904.  . . for the square lattice. 

In this case there is one way of joining in each dimension, so that 
Similar arguments apply to the case of a d-dimensional simple hypercubic lattice. 

(13) 
-1  In A,(d)z=m ln[da,(d)]. 

Using aI3(3)= 3322 769 129, a11(4)= 3178 474 308, alo(5)=3648 115 531, a9(6)= 
1398 295 989 and a9(7)= 5933 702 467 from Gaunt er a1 (1976), we find the follow- 
ing lower bounds for As(d): 5.8765 , , . (d  = 3), 8.2903 , , . (d  = 4), 10.6194 . . . (d  = 5), 
12 ,6659. .  . (d =6), 15.1295.. . (d = 7 ) .  

We have also deduced from the data of Gaunt et a1 (1976) that for all d 

+313 921 008(:) +343 901 376(;) + 136 048 896( d 8) 
(14) 

which may be used to obtain lower bounds for d > 7. In addition, it can be shown 
using (13) and (14), that for any particular d 

A,(d)> 2d - 1. (15) 

(It should be noted that the bound (9) is too weak to prove this result for any d 3 6 
with the data presently available.) Since it is well known that 

p ( d )  C 2d - 1 (16) 

AS(d)>F(d) (17) 

A b(d) > CL ( d ) .  (18) 

we have that for all d 

and hence from (5) 
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These results are of some interest since there appears to be a wide class of connected 
graphs which have the same connective constant, for a given lattice (see e.g. Guttmann 
and Whittington 1978). The interesting difference is probably that, as n increases, 
new types of graph (for example, graphs with higher cyclomatic index) contribute to 
the number of animals. 

Similar reasoning, in which for instance the bottom site of a bond cluster is made to 
coincide with the top site of a second bond cluster, can be given for bond animals, and 
we obtain 

In At,(d)a m-' ln[db,(d)]. (19) 

For the square and simple cubic lattices, b15(2) = 1880 580 352 (Sykes and Glen 1976, 
unpublished) and b11(3)= 2375 037 477 (Sykes et  a1 1976, unpublished), which yield 
Ab(2)a4.3486. . . and Ab(3)a7.8651 , , . , respectively. For d a 4  we may obtain 
bounds by using the result 

b1,(d)=(~)+730532(rf)+255 716421(;)+8 975 840 816(4) d 

d 
+95 175 488 3 8 5 ( 3  +442 224 105 756( 6) 

d + 1048 268 558 064( :) + 1326 024 805 120( 8) 

(20) 
d + 853 070 397 696( i) + 219 503 494 144( 

which we have deduced from the work of Gaunt and Ruskin (1978) and is valid for all 

23.2044.. . and so on. 

shown that 

d. This gives Ab(4)S 11.4873 . . . , At,(5)a 15.3219, . . , ht,(6)3 19,2308. . . , hb(7)a 

For the d-dimensional simple hypercubic lattices, Gaunt and Ruskin (1978) have 

At,-hs =h~[$C7-' +o(U-3)] (21) 

where U = 2d - 1 and A B  = C T ~ / ( C T -  l)v-l is the Bethe approximation for the growth 
parameter A of either bond or site clusters. This expansion which is probably asymp- 
totic in nature suggests that A b  > A ,  for all d. Numerical estimates of At, and A, support 
this conjecture for d = 2 to 6 (Gaunt et  a1 1976, Gaunt and Ruskin 1978). For the 
square lattice (d = 2), the best upper bound we know of is A, < 4.5 due to Conway and 
Guy (see Lunnon 1971). Unfortunately, our best lower bound of hbS4.3486. .  I is 
just too weak for us to prove rigorously that /\!=,>As for the square lattice. However, 
we note that our lower bound on Ab(2) is greater than the best numerical estimate of 
A42) which further supports this conjecture. 
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